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A mathematical formulation for solving the beam equation is developed and applied to describe
marine riser motions due to current forces. The method is su$ciently #exible to consider
arbitrary currents that vary continuously with depth and time. The relative motions between
the riser and the free currents are converted to forces using a simpli"ed formulation, leading to
a linear damping and a current drag that is proportional to the square of the current speed. The
drag coe$cient can vary with time and is used to simulate vortex-induced vibrations where
the Strouhal number is permitted to vary along the riser. The expansions for riser displacements
are given in terms of time-varying coe$cients together with axial varying functions (eigenfunc-
tions). The evolution of the coe$cients are determined through a numerical time-integration
procedure, while the functions are computed once through an eigenvalue problem. A continu-
ous axial variation of the displacements and bending moments with time are computed using
this method. The method is applied to two physical test-cases that have been carried out to
study vortex-induced vibrations. The tests employed risers that were approximately 11 and
90 m long. Comparisons between simulated and measured displacements and bending mo-
ments revealed a good correspondence between modelled and measured data. This was
achieved without tuning of the drag and damping coe$cients. The energy-conserving proper-
ties of the model are also demonstrated by forcing the model by an impulse load.

( 2000 Academic Press
1. INTRODUCTION

As o!shore oil-gas exploration and production are moving towards deeper water, there is
increasing attention on drag forces caused by ocean currents. A signi"cant contribution to
the total drag may be due to the risers. The drag forces may lead to considerable static
displacements, and under certain conditions, to vortex-induced vibrations (VIV) and
possible fatigue damage. The design of risers therefore requires attention to fatigue
life. There is a vast literature on VIV studies, mostly for cylindrical structures, and a review
article was published by King (1977). A comprehensive and well-written presentation of the
vortex-shedding phenomenon and the problem of predicting VIV of slender marine struc-
tures can be found in Halse (1997).

Considerable e!ort has been made in recent years to develop computer codes capable of
computing riser responses. This development has followed two main directions as follows.

1. Simpli"ed engineering models where the #uid}structure interactions are considerably
simpli"ed. One such program is known as SHEAR7, developed at MIT and widely used in
the industry (Vandiver & Li 1994). The advantages of this type of model are simplicity and
cost e$ciency with respect to computational resources. One of the disadvantages is the
introduction of the added mass (entrainment mass) formulation that introduces an uncer-
tainty into the calculations. The model presented in this paper belongs to this category.

2. Computational #uid dynamics (CFD) models coupled with a structure model, usually
denoted by FSI model (Fluid structure interaction). With these models, it is possible to give
0889}9746/00/020257#17 $35.00/0 ( 2000 Academic Press
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a realistic resolution of the #ow"eld around a moving boundary and hence opens the
opportunity to have a more correct forcing (pressure and viscous) on the riser. One such
code is known as Nektar, developed at Brown University [see, e.g., Newman & Karniadakis
(1997)].

Nektar has unique capabilities which allow a direct numerical simulation (DNS) of
turbulent #ow past freely vibrating cables and beams. It uses two di!erent formulations of
the moving domain: a boundary-"tted-coordinate system, and an arbitrary-Lagrangian}
Eulerian formulation. It also uses spectral methods on an unstructured grid, greatly
reducing the required computational e!ort. FSI models applied to long and slim bodies like
a riser will require enormous computer power that is not generally available today.

The model presented in this paper is based on a spectral method solution of the beam
equation where the current forcing is allowed to vary in time and over depth. A forcing
frequency is prescribed through the drag (or lift) coe$cients and is based on the Strouhal
number. Simulations carried out with Nektar indicate that the Strouhal number has
a signi"cant variation from node to antinode (Karniadakis, private communication), and in
this work the Strouhal number is allowed to vary along the riser. Numerical results are
computed and presented for the transverse vibrations and validated against measurements.

2. MODEL FORMULATION

The equation describing the transverse motion of a beam will now be utilized to examine
the dynamics of #ow-induced riser de#ections and bending moments. Suppose that a cylin-
drical riser whose ends are at x"0 and x"¸ is coincident with the x-axis at time t"0.

Then, at time t'0, a force is applied transversly on the riser, leading to a transverse
de#ection y (x, t) which satis"es the di!erential equation
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In this equation, E is Young's modulus of elasticity, I the second moment of area, ¹ the
axial tension (¹(0), F the hydrodynamic forcing, F

d
the hydrodynamic damping including

structure damping, and m the structure mass per unit length including added mass. The
quantity EI, the #exural rigidity of the riser, is assumed to be constant, and EI(L2y/Lx2) is
the bending moment. The axial tension ¹ is generally varying with x but will here be
considered as constant. This can be justi"ed for application to the risers described in the
subsequent paragraphs.

A linear damping force formulation will be employed in this study and is given by
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where R is a prescribed constant. Equation (1) can then be written as
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A scaling of the x-coordinate x"m¸ is introduced, and then for any particular location
m let /

n
(m) be an arbitrary di!erentiable function de"ned within the range 04m41.

Multiplication of the scaled beam equation (2) by /
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(m), and integration with respect to m,
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d2>]
n

dt2
#a

d>]
n

dt
#b P

1

0

L4y
Lm4

/
n
dm#p P

1

0

L2y

Lm2
/

n
dm"

1

m P
1

0

F/
n
dm. (3)



MARINE RISER IN TIME- AND DEPTH-DEPENDENT FLOWS 259
In this equation
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By integrating the third term of equation (3) by parts four times, and similarly twice for
the fourth term, equation (3) is converted to
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contains the boundary conditions that need to be prescribed at the riser end-points m"0

and 1. This term is given by
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Taking /
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to satisfy
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the choice of boundary conditions (see Section 4) will automatically yield
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The direct substitution of equations (7) and (8) into equation (5) gives the transformed
equation of motion
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where >]
n
is only a function of time. With a given set of boundary conditions, equation (7)

may be integrated to determine /
n
, j

n
. From prescribed initial conditions and a formulation

of the forcing term F, the time-evolution of the integral transformation>]
n
is computed from

equation (9). The displacement y can then be found by inverting the integral transform given
by equation (4).

3. THE INVERSE TRANSFORMATION

It is easy to show that equation (7), together with a set of homogeneous boundary
conditions, leads to an eigenvalue problem with in"nitely many solutions, j

n
denoting the

ascending eigenvalues and /
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the corresponding eigenfunctions. If the general solution of
equation (2) is expressed by a series expansions in terms of the orthogonal functions /

n
,

y"
=
+
r/1

A
r
(t) /

r
(m), (10)



260 G. K. FURNES
the inverse transformation of equation (4) is straightforward. Introducing the expansion (10)
into equation (4), the only contribution to the integral is for r"n due to the orthogonality.
The expansion coe$cient A

n
in equation (10) can then be expressed by
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the displacement is given by
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Having now an expression for the displacement y, which can be evaluated continuously
over 04m41, it is easy to "nd expressions for the bending moments and the tensions. The
bending moment M can be computed from
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where the prime denotes di!erentiation with respect to m. Having determined the bending
moment, the corresponding stress is given by
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where D is the diameter of the riser.
The change in axial tension is proportional to the relative elongation of the riser

associated with the de#ection y. By denoting the length of the riser at time t'0 by S, the
relation between S and y can be expressed by
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Di!erentiating y in equation (13) with respect to m, substituting for y@ in equation (15) and
then integrating from m"0 to 1, yields the following expression for S:
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It is evident that S/¸ is always greater or equal to one. The next step is to determine /
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,
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n
.

4. EIGENFUNCTIONS AND EIGENVALUES

The general solution of equation (7) is given by
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where c
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4

are constants to be determined from the boundary conditions.
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The boundary conditions associated with the di!erential equation (7) depend on the
manner in which the riser is supported at the end-points. The following are the most
common: (i) clamped, built-in or "xed end: y"y@"0; (ii) hinged or simply-supported end:
y"y@@"0; (iii) free end: y@@"y@@@"0.

Boundary condition (ii) will be employed in the present paper due to its relevance for the
model validation discussed in Sections 6 and 7. The boundary conditions are hence

/
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(1)"0, /@@

n
(0)"0, /@@

n
(1)"0

which together with scaling or normalizing of /
n
lead to the following result:
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where n"1, 2, 2, R. It is evident that the solutions of equation (7) given by equation (18)
satisfy equation (8) as well.

Introducing equation (18) into equation (12) leads to

'
n
"2, n"1, 2, 2, R.

Finally, introducing the boundary conditions into equation (6) yields

B
n
"0, n"1, 2, 2, R.

5. HYDRODYNAMIC FORCING

Before the solution of equation (9) for >]
n

can be obtained, it is necessary to describe the
hydrodynamic forcing represented by F. Generally, F represents the total pressure and
viscous forces acting per unit length of the riser. A model formulation based on the
Navier}Stokes equations could be used for this purpose. As the riser boundaries are moving
in time and the #ow "eld is three-dimensional and time-varying, this will lead to a tremend-
ous computational task. A simpler formulation will therefore be applied in this paper, where
F is speci"ed by
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Here;(m, t) is the current speed, D is the riser diameter, o is the density of the surrounding
liquid and C

d
is the nondimensional drag (or lift) coe$cient. The drag/lift coe$cient will be

expressed by
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where f is the forcing frequency that must be determined. When the riser motions are small
and outside the &&lock-in'' mode, it is natural to relate f to the vortex-shedding frequency f

s
,

determined from
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where St is the Strouhal number. The frequency of the lift and the drag force may then be
given by f"f

s
and f"2 f

s
, respectively. In the &&lock-in'' mode the vortex shedding is

apparently controlled by the riser motion itself and may be deduced from some of the
natural frequencies of the participating modes of the riser system.

To resolve the vertical structure of the currents, the axial coordinate of the riser is divided
into M intervals bounded by the coordinates m
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m"1. The velocity pro"le will be approximated by layers of piecewice linear functions. For
the interval m

k
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the velocity is given by
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where d"1 for;50 and d"!1 for;(0. The forcing term in equation (9) can now be
expressed by
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which can be integrated exactly.
The response of a cylindrical riser to external forcing is critically dependent upon the

relationship between the forcing frequencies and the frequencies of the free vibrations
(natural frequencies) of the system. It has been demonstrated experimentally [for a review of
vortex shedding research, see King (1977)] that, initially, as the #uid velocity is increased
from zero, the cylinder is stationary and the vortex shedding frequency follows the
&&Strouhal relation''. However, as the lower natural frequency is approached the cylinder
leaves the Strouhal frequency and begins to oscillate in its natural frequency. Increasing the
velocity further, it will remain &&locked'' to the natural frequency over a wide velocity range
and then, at a certain velocity, it will jump to the next natural frequency or return to follow
the Strouhal frequency.

A complete description of the processes behind the frequency responses to changing #ow
does not exist so far. The method used in this paper is outlined in the following sections.

The dispersion relation for free waves along the riser can easily be deduced from
equation (2) by neglecting the forcing (F"0) and damping (R"0). Hence,
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where k is the wavenumber. For &&standing waves'' the wavelength " appears as a fraction of
the riser length ¸,

""

2¸

n
,

where n is one less than the number of nodes along the riser. The &&half-wave'' oscillation
appears for n"1 ("rst mode). Introducing for k"2n/" in equation (25) gives the discrete
natural frequencies
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For a riser in which the #exural rigidity EI;¹¸2, the natural frequencies of the lowest
modes are determined by
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However, as the number of modes increases, the e!ects of the rigidity become more and
more important.

In summary, having assumed that the dynamics of cylindrical marine risers can be
described by the beam equation (1), a method has been presented to solve this equation by
expanding the displacement in terms of eigenfunctions through the axial direction. Coe$-
cients of these expansions vary in time and are determined from a numerical time-stepping
procedure. In this way, the transverse displacement and bending moments can be computed
at any point along the riser as time advances. The hydrodynamical forcing of the riser is
assumed to be proportional to the square of the #ow velocity, where the vertical #ow
structure is approximated by piecewise linear functions. Using this method, it is possible to
resolve any observed current pro"le, including time-dependent #ow problems.

6. VALIDATION AGAINST &&ROTATING RIG'' DATA

Model tests have been performed with a riser in a rotating rig (Mo & Lie 1997). The
diameter of the riser was 0)02 m and the total length between the pinned ends was 11)48 m.
The upper part of the riser could be placed in three di!erent positions. In this way the e!ect
of shear #ow could be tested. In all the tests, accelerations transverse to the current were
measured at nine vertical positions. These time-series were integrated twice to give the
displacement; for details see Mo & Lie (1997). The riser was designed for neutral buoyancy
and hence the assumption of constant axial tension ¹ should be justi"ed.

The simulation model decribed in previous sections was set up for a test-case with
uniform current pro"le of 0)51 m/s (Mo & Lie 1997, test 5004). The pretensioning for this
test was ¹"!713 N. A constant drag coe$cient of C(k)

0
"0 and C(k)

1
"1)0 was applied at

all depths, except for the upper 1)7 m of the riser, which was above the water surface (in air).
Over this section of the riser the drag coe$cient was reduced in correspondence with the
di!erence of density between air and water. Model quantities which are not provided in
Mo & Lie (1997) are the damping coe$cient R and the added mass coe$cient C

a
. In the

following calculations their values are R"1)5 kg m~1 s~1 and C
a
"1)0. The added mass

contribution to m is given by the second term in

m"m
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where m
s
is the given structure mass per unit length. The density for water was taken as

1000 kg/m3 and for air as 1)3 kg/m3.
The model was started from a state of rest at time t"0 and integrated forward in time in

steps of D¹"0)02 s. The Strouhal number was prescribed at 10 spatial intervals covering
a range of values from 0)15 to 0)22. After 1000 iterations (20 s), the standard deviation (STD)
of the transverse de#ections was calculated at a number of depths. This was done after a test
of convergence of the expansion given by equation (13). The series was truncated after 50
terms, where the truncation error was far below the prescribed level.

The STD pro"le of the displacements are plotted in Figure 1 together with corresponding
values recovered from the rotating rig experiment. It is evident from Figure 1 that the
computed de#ections are dominated by the third mode, which is in agreement with
observations. Comparing the magnitude of the de#ections, there is generally good agree-
ment between model and observations. However, the most pronounced discrepancy ap-
pears at the two deepest measuring gauges. A reasonable explanation of this is not easy to
give. Intuitively, one should expect a symmetric distribution of the STD with respect to the
mid-point of the riser, if the riser was completely submerged in the water and the tension
uniform. Although the simulation model to some extent incorporates e!ects of the air
column at the upper end of the riser, through the forcing term, a series of tests have shown
that the model cannot account for this discrepancy. The possibility of measuring error
cannot be ruled out.

For comparison purposes the Shear7 model (Vandiver & Li 1994) was run for the same
test-case with a &&standard'' set of parameters. The result from this is also presented in
Figure 1. It is apparent from the "gure that Shear7 is also predicting the third mode as
dominating, but overestimates the displacements. The reason for this has not been exam-
ined, but improvements can probably be achieved by introducing a di!erent parameter
setting.

Time series of the displacement at m"0)5 and of the relative elongation are plotted in
Figures 2 and 3, respectively, together with the associated power spectral density (PSD).
The elongation is computed from equation (16) and is therefore proportional to the
perturbation of the top tension. From the PSD analysis it was found that the leading
frequency of the displacement is 4)3 Hz, compared to 4)11 Hz in the rig test. Figure 2
indicates also a presence of energy at 1)4 Hz. Further, a band of energy is found between
0 and 0)4 Hz.

The frequencies of the free oscillation computed from equation (16) are 1)33, 2)67 and
4)02 Hz for modes 1, 2 and 3, respectively. The peak frequency (4)3 Hz) is therefore close to
the frequency corresponding to the third-mode natural frequency of the riser.

Evidently, there is also some contribution from the "rst mode (1)3 Hz). This is a conse-
quence of the sudden onset of the hydrodynamic forcing at t"0. However, this contribu-
tion is damped out as time progress.

Due to the quadratic term in equation (16) it is expected that the relative elongation will
appear at a frequency twice the frequency of the displacement, computed from equation
(13). The PSD of the elongation shows that the dominant contributions are at 0)2 and
8)6 Hz. The elongation at the highest frequency (8)6 Hz) is consequently induced by the
third-mode displacement. It is interesting to observe that this is not the peak frequency of
the elongation that appears at 0)2 Hz.

The subsequent comparison was carried out for a shear #ow situation in which the
current speed at the surface was 0)27 and 0)51 m/s at the bed. The pretensioning for this test
(Mo & Lie 1997, test 5104) was ¹"!729 N. Again, the riser model was started from rest
and integrated forward over a period of 20 s using the same parameters as in the previous
case. Figure 4 presents the STD pro"le of the displacements together with data recovered



Figure 1. Comparison of STD of relative displacement (y/D) between rotating rig data (5004), present model
and Shear7: *, present model; } } }, Shear7 results; *, rotating rig measurements.

Figure 2. Time series of computed relative displacements (left panel) at m"0)5 togeter with its power spectral
density (right panel) corresponding to rotating rig case 5004.
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Figure 3. Computed time series of relative elongation (left panel) together with its power spectral density (right
panel) corresponding to rotating rig case 5004.

Figure 4. Comparison of STD of relative displacement (y/D) between rotating rig data (5104), shown as
asterisks, and present model.
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from the corresponding rig experiment. According to Figure 4, the transverse motion is
dominated by the third mode. This is in good agreement with the observations. It is also
apparent from Figure 4 that the model is able to resolve the main variability of the observed
VIV motions.
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The observed peak frequency was found to be nearly constant with depth and had a value
of 3)8 Hz. This feature was also apparent in the simulations where the peak frequency was
found to be 3)9 Hz.

The conclusion that can be drawn from these comparisons thus far, is that the model
described in the foregoing is capable of reproducing the main features of the measurements,
such as peak frequency and dominant modes, as well as the main variability of the
displacements.

7. VALIDATION AGAINST &&HAN"YTANGEN'' DATA

A series of model tests with deep-sea risers in a fjord at Han+ytangen has been carried out
by Marintek (Huse 1997). One of the objectives was to provide experimental information on
the performance of deep-sea risers regarding vortex-induced vibration in shear #ow.

A riser with length of 90 m and diameter 0)03 m was instrumented for measuring bending
moments in two directions at 29 di!erent levels along the riser. The tests were done by
suspending the riser from a surface vessel and towing it along a &&#oating quay'' by moving
the top end. For details, see Huse (1997). As for the rotating rig, this riser had also nearly
neutral buoyancy, which justi"es the approximation with uniform tension in the axial
direction.

The simulation model was now set up for a test-case of linearly varying currents, ranging
from of 0)56 m/s at the top point, to approximately 0)0 m/s at the sea-bed end (Huse 1997,
test T13). The pretensioning for this speci"c test was ¹"!1823 N. As in the previous
calculations, the drag coe$cient was taken as constant at all depths and given by C (k)

0
"0

and C (k)
1
"1)2. Damping and added mass coe$cients and the density of sea water are

R"1)1 kg~1ms~1, C
a
"1)0 and o"1025 kg/m3, respectively.

The model was, as in the previous case, started from a state of rest at time t"0 by
imposing a sudden hydrodynamic force given by equation (24) and with the same current
pro"le as used in the test. Equation (9) was then integrated forward in time using a time step
of D¹"0)05 s. The Strouhal number was prescribed at 10 spatial intervals by arbitrarily
alternating its value between 0)19 and 0)20 from one layer to the next.

A closer examination of the observed time series together with model simulations,
revealed that the number of excited modes in test T13 was above the limit which could be
resolved with the given number of bending moment gauges. Hence, it was not possible to
integrate the bending moments to displacements using direct methods. The comparison
exercise is therefore carried out on the bending moments.

Figure 5 presents STD of the bending moments normal to the #ow direction, as recovered
from measurements (asterisk), Shear7 (dashed line) and the present model. The STD of the
measurements are taken over a 33)3 s sequence of the time series (2001}6000) and should
give a measure of the cross-#ow vortex-induced vibration activity. The STD of the model
time series was computed from the "rst 2000 iterations (100 s) using 90 eigenfunctions.

According to Figure 5, the Shear7 model predicts the 19th mode as the dominant one,
while the present model gives the 13th. With 29 gauges (minus 5 that did not function), this
indicates a possible lack of resolution in performing a direct integration of the measured
bending moments to obtain displacements. This was also con"rmed by a second-order
integration algorithm which gave displacements due to VIV, far beyond the expected
magnitudes of VIV.

A further comparison of the two models (Figure 5) indicates that Shear7 is producing
larger amplitudes than the present model, except for the vicinity of the end-points, but the
depth mean value is less. The mean deviation between model and observed data is slightly
smaller for the present model than for Shear7.



Figure 5. Standard deviation of the bending moments normal to the #ow computed from present model, Shear7
and from Han+ytangen test-case T13: - - - - , Shear 7; * , measured; * , present model.
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Time series, produced by the model, of displacements near m"0)5 and of the relative
elongation are plotted in Figure 6. The PSD diagrams of the time series are plotted in the
same "gures.

Referring to Figure 6, it is seen that the amplitude of the displacement is varying with
time. The variation is within one riser diameter, except at the beginning of the time series,
where the sudden onset of the forcing leads to excitation of a transient "rst mode
displacement. The two dominating frequencies of the displacements are at approximately
2)2 and 0)08 Hz. Regarding the elongation, the dominating frequencies are exactly twice
these frequencies, namely 4)4 and 0)16 Hz.

For comparison purposes it is of interest to get an impression of how stable the observed
frequencies are over time. The time series of test T13 were split into shorter sequences that
were analysed separately. Taking the PSD of each sequence, it was found that the frequency
distribution to some extent varied with time. However, signi"cantly increased responses
were generally observed around 2)3 Hz, which is close to the leading frequency found in the
model simulation.



Figure 6. Computed time series of relative displacements (upper left panel) together with its power spectral
density (upper right panel) and relative elongation (lower left panel) together with its power spectral density (lower

right panel), corresponding to Han+ytangen T13.
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In a subsequent test-case (T48) the tension was increased to ¹"!3716 N and the
current velocity varied linearly from 0)95 m/s at the top point to near 0)0 m/s at the sea bed.
The other parameters were as in test-case T13.

Figure 7 shows STD of the measured bending moments normal to the #ow direction
(asterisks) together with the corresponding model calculation, using the same parameter
settings as for the T13 calculation (except pretensioning and current speed).

It is apparent from Figure 7 that, according to the model simulation, the 15}17th modes
are excited along the riser. The amplitudes vary with depth and are most pronounced
around the mid-point of the riser. The mean value of the bending moments is slightly higher
above the mid-point than below, which is in accordance with the measurements. Similarly
to the previous case, the depth mean value computed from the model is slightly lower than
the observed value, which indicates that the chosen drag coe$cient could be adjusted to
achieve better agreement with measurements.

8. RESPONSE TO IMPULSIVE LOADS

Impulsive or shock loads are of great importance in the design of marine risers, where
impacts from neighbouring risers, for example, may occur. This section deals with the
conservation and distribution of energy when an impulsive force is imposed at a limited
segment, denoted by l, of the riser. The segment is prescribed as symmetrical with respect to
the mid-point of the riser, but any distribution may be chosen.



Figure 7. Standard deviation of the bending moments normal to the #ow computed from present model and
from the Han+ytangen test case T48 (asterisks).
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The test-case T48 was set up to simulate the Hanoytangen riser using a pretensioning
¹"!3716 N. A sudden force of 500 N was imposed at time t"0 with a duration of
Dt"0)1 s. The force was prescribed to be constant along the entire segment which had the
length l"0)72 m. The work exerted by the applied force can be computed from

="FlyN , (27)

where F is the constant force and yN is the mean displacement of the segment at the time Dt.
By choosing R"0 there is no energy dissipation in the system and the external work
should be balanced by the sum of kinetic and potential energies, provided that no loss is
introduced by the computational methods. The kinetic energy is expressed by
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The potential energy consists of contributions due to axial tensions E
T

and the bending
strains E

S
and can be expressed by

E
T
"!¹(S!¸), (29)
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In equation (29), S!¸ is the riser elongation. The kinetic and potental energies are now
easy to evaluate using the expressions for y and S given above.

Figure 8 presents time series of E
k
, E

T
and E

S
using 90 eigenfunctions. It is seen from

Figure 8 that the potential energy is dominated by the variation of the axial tension. The
TABLE 1

Total response energy computed using an increasing
number of eigenfunctions M; imposed energy: 102)83 J

M"20 M"40 M"60 M"90

<"93)42 J <"101)42 J <"102)40 J <"102)77 J

Figure 8. Time series of energy due to an impulsive forcing. Kinetic energy is denoted by E
k
, potential energy

components by E
T

and E
S
, and the total energy by <:*, E

k
; - - - , E

T
; . . . , E

s
; - ) - ) -. <.
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total energy

<"E
k
#E

T
#E

S

is also presented in the "gure. It is evident that the total energy is nearly constant after the
impact phase. A long-term simulation with the same set-up con"rms that the energy is
conserved in the model.

From equation (27) it was found that the work due to the external forcing is 102)83 J. The
Table 1 presents the total energy< computed for di!erent number of eigenfunctions M. It is
evident from the table that, as the number of functions is increased, the total riser energy
approaches the work exerted by the external force. Using 90 eigenfunctions, the total energy
is 102)77 J or above 99)9% of the applied external energy.

The energy caused by the impulsive forcing is transported away from the impact area in
the form of waves. As the forcing is completely symmetrical with respect to the midpoint of
the riser, equal amounts of energy are transported towards the end-points, where they are
then re#ected. This is demonstrated in Figure 9 where contours of displacement versus time
are plotted. The symmetrical distribution is evident from this "gure.

9. CONCLUDING REMARKS

A model has been formulated to examine riser displacements due to time- and depth-
dependent currents. The model has been applied to two physical test-cases that have been
carried out to study vortex-induced vibrations. Comparisons between simulated and
measured transverse displacements and bending moments revealed a good correspondence
between modelled and measured data.

The model reponse to a prescribed external impulsive force has also been examined. By
comparing the external work on the riser with the total response energy (kinetic plus
potential), it turns out that the model accurately conserves energy. Long-term simulations
with the model did also con"rm that there is no arti"cial energy dissipation using the
method described in this paper.

There is a wide range of values for the drag/lift and damping coe$cients in the literature.
The values chosen in this paper were more or less arbitrarily selected within this range.
Model comparisons versus the Han+ytangen data indicate a consistent deviation that most
likely could be reduced by a &&tuning'' of the coe$cients.

The model formulation was worked out for a constant axial pretensioning ¹. However, it
is easy to reformulate the model to include a prescribed axial variation of the pretensioning.
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